SCnorm: robust normalization of single-cell RNA-seq data
نویسندگان
چکیده
منابع مشابه
Assessment of Single Cell RNA-Seq Normalization Methods
We have assessed the performance of seven normalization methods for single cell RNA-seq using data generated from dilution of RNA samples. Our analyses showed that methods considering spike-in External RNA Control Consortium (ERCC) RNA molecules significantly outperformed those not considering ERCCs. This work provides a guidance of selecting normalization methods to remove technical noise in s...
متن کاملNormalization and noise reduction for single cell RNA-seq experiments
UNLABELLED A major roadblock towards accurate interpretation of single cell RNA-seq data is large technical noise resulted from small amount of input materials. The existing methods mainly aim to find differentially expressed genes rather than directly de-noise the single cell data. We present here a powerful but simple method to remove technical noise and explicitly compute the true gene expre...
متن کاملScater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
Motivation Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) an...
متن کاملDropLasso: A robust variant of Lasso for single cell RNA-seq data
Single-cell RNA sequencing (scRNA-seq) is a fast growing approach to measure the genome-wide transcriptome of many individual cells in parallel, but results in noisy data with many dropout events. Existing methods to learn molecular signatures from bulk transcriptomic data may therefore not be adapted to scRNA-seq data, in order to automatically classify individual cells into predefined classes...
متن کاملscImpute: accurate and robust imputation for single cell RNA-seq data
The analysis of single-cell RNA-seq (scRNA-seq) data is complicated and biased by excess zero or near zero counts, the so-called dropouts due to the low amounts of mRNA sequenced within individual cells. We introduce scImpute, a statistical method to accurately and robustly impute the dropouts in scRNA-seq data. scImpute is shown as an effective tool to enhance the clustering of cell population...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Methods
سال: 2017
ISSN: 1548-7091,1548-7105
DOI: 10.1038/nmeth.4263